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The statistical properties of solutions of the one-dimensional Burgers equation 
in the limit of vanishing viscosity are considered when the initial velocity poten- 
tial is fractional Brownian motion (FBM). We establish the asymptotic power- 
law order for log-probability of large values, both velocity and shock (amplitude 
of velocity discontinuity). This confirms the conjecture of U. Frisch and his 
collaborators. Rigorous results for this problem were previously derived for the 
case of Brownian motion using Markov techniques. Our approach is based on 
the intrinsic properties of FBM and the theory of extreme values for Gaussian 
processes. 
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1. I N T R O D U C T I O N  

The equation 

a,u + u O,.u=/~ O~xU 

u(x, t = 0) := Uo(X) = ds(x)/dx 
(1) 

with a random potential s(x), x E R ~ is frequently called the 1-D model of 
Burgers turbulence. ~3) In relation to cosmological applications, ~14) there is 
the problem of a large-scale description of solutions u at large times. It is 
known that for a broad class of gaussian space-homogeneous initial data Uo, 
the long-time large-scale limits of a suitably rescaled solution u(t, x) exist and 
can be described as solutions of the inviscid Burgers equation, i.e. as limit 
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solutions of (1) wi th / t  ~ 0. In cases that are nontrivial for applications 
the initial potential s(x), Is[ < oe of the scaling limit is defined either with 
the help of a Poissonian point field (x, s) (see Molchanov et aL) (7) or with 
the help of a continuous self-similar gaussian process wy(x) of the following 
type 

Elwy(x)-w~(y)12=lx-y] ~, O<),<2 (2) 

that is, s(x) is the fractional Brownian motion wy(x) (a nonrigorous result 
of Gurbatov et aL). 14) 

For  a continuous potential s(x) = o(x2), x --, o0 the solution of (1) in 
the inviscid case is given by the Hopf-Cole formula (3) 

u(x, t ) = ( x - a ( x ,  t))/t (3) 

where a(x, t) is the lower bound of points a at which the function 
y--* s (y )+  ( y -  x)a/2t achieves its (global) minimum; briefly 

a(x, t) = arg inf (s(a) + (x - a)2/2t) (4) 
a 

For  fixed t ,a(x, t) is a nondecreasing left-continuous function of z. ~11) 
Following the terminology of gas dynamics, a solution u, a point of discon- 
tinuity of u (or a(x, t)), and a magnitude of such a discontinuity will be 
called velocity, shock point, and shock, respectively. The papers ~tt' 13) have 
raised several serious issues related to the statistical properties of solutions 
of (3, 4) where either s(x) or ds(x)/dx is a random process w~(x). The issues 
concern the fractal structure of points 5~  t o ) , x ~ R  l} and the 
distribution of the shocks m = Au = a(x - O, to) - a(x + O, to). Computer  
simulations and some heuristic arguments suggest the following conjec- 
tures:(11, 13) 

(i) The set ~ ,  is such that 

dim Ya = 7/2 if s '  = wy 

c a r d { ~ , n  [ - N ,  N]} < oe, if s=wy  and N < oo 
(5) 

(ii) The distribution of shocks Fro(x) has the following asymptotic 
behavior as x ~ 0 or x --* oo: 

O < c l < F ( x ) x ~  x < a  

- o o < c  < l n F ( x ) . x 2 ~  <O, x > 8  - l  
(6) 
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where F = 1 - F and 0 = ~/2 - 1 if s = w~. In the case s' = wy we have to set 
0 = ~/2 and to replace F and F by the average number of shocks of size 
m > x in a fixed unit interval. These conjectures have received rigorous 
substantiation for the markovian case only so far, y =  1 (1"2' 10), the lower 
bound of dim 5r for the case s ' =  w~ was found recently in the general 
case.(5) 

Below we provide a proof of hypothesis (6) for the case s=we, 
~, ~ (0, 2). Estimates of type (6) will be derived both for the distribution of 
velocity u and shock m. We indicate constants c_+ that are the closest and 
uniformly bounded in 9' for the distribution of u. Although the case 7 = 1 
has been studied in great detail by Burgers, ~ the limiting values of c+_ are 
not known. The general case of ? presents certain difficulties related to the 
fact that the initial data are not markovian. This can be overcome by using 
the self-similarity of wy(x) and the well-developed theory of extreme values 
for Gaussian processes. 

2. PRELIMINARY REMARKS 

The initial potential s(x) = wy(x) possesses a self-similarity of the type 

w~(~,x) ~= ~/2w~(x) (7) 

where = d denotes the equality of finite-dimensional distributions. There- 
fore, solutions to (3, 4) have a similar propertyr 21 -Y/2u(2x, 22-y/2t)=d 
u(x, t) which reduces the study of a spatial statistic of u(x, t) to the study 
of a statistic of the process u(x) = u(x, t = 1). It follows from 

w~(x) - w~(xo) L w~(x-  Xo) (8) 

that the process u(x) is space homogeneous (invariant under shifts along x). 
For this reason all distributions connected with a fixed point x have the 
same relevance to any other point. 

It follows from the statistical symmetry w y ( - x ) =  ~ wy(x) and the 
parity of y = x2/2 that u(x) is statistically odd function: 

u(-x)  ~= -u(x) (9) 

The following geometrical - ._(10) interpretation is useful for describing solu- 
tions (3, 4). Consider a convex hull CF of the function F(a) = a2/2 + s(a).  
By (4) 

a(x, t = 1) := a(x) = arg inf (F(a) - x a )  
a 

822/88/5-6-10 
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where F(a) can obviously be replaced with CF(a). Take the support line 
to CF with a slope of x. The line may be identical with CF at a single 
point ~(x) (regular point x), or within an interval [a , (x) ,  a*(x)]. Then 
a(x) =~(x)  at regular points, while at shock points: a ( x - O ,  1 ) = a , ( x ) ,  
a(x+O, 1) = a*(x) and m = u ( x +  0 ) - u ( x - O )  = a ,  - a *  <0.  

In physics terms, ~3) the shock interval ( a , ,  a*) of the point x deter- 
mines the positions of particles of mass 0a and momentum Os(a) which 
will be absorbed into a single particle after time t = 1 having the position x, 
the mass m = a* - a , ,  and the momentum I =  s(a*) - s(a,). 

S t a t e m e n t  1. Let CF(a) be the boundary of the convex hull 
F=a2/2+wy(a) .  Then those points a where CF(a)=F(a) have zero 
Lebesgue measure. 

Proof. Following Sinai, t~~ we will call a point ao special, if there is 
a vicinity of ao that depends on the sample o9 where 

F(a) >~ F(ao) + k(og)(a - ao), la - a0l < e(og) 

One has 

wy(a)-wy(ao)>/k(o9)_a+ao>~k(o9) e(o9) ao (10) 
a - a  o 2 2 

at a special point for all a: a0 < a < ao + e(o9). 
However, the fractional Brownian motion wy(x) has the following 

propertytS): 

lim inf w~(t) 
, so  ty/2 x/12 log log tl 

- 1  a.s. 

Therefore by w~(t) =d wy(t + ao) -- w~(ao), we have that the left-hand side of 
(10) cannot be semibounded at ao for almost all samples. Hence any fixed 
point is not a special a.s. The standard argument based on the Fubini 
theorem demonstrates that the set of special points has zero Lebesgue 
measure a.s. The set A where Cr(a ) =F(a) is a subset of special points, 
hence mes A = 0 a.s. | 

3. TAIL PROBABILITIES FOR u(x) AND SHOCK INTERVALS 

Consider a solution of (3, 4) with s(x)=wy(x) ,  y E(0, 2). Below we 
estimate the probabilities of large velocities u(x) and of the lengths of shock 
intervals ( a . ,  a*) that cover a given point a. Note that the conditional 
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distr ibut ion of  the statistic m = a* - a ,  given a e ( a , ,  a*)  and  the uncondi-  
t ional  one are different. This c i rcumstance  has  not  been noticed by  
Avel laneda and E, ~1'2) consequently,  their p roo f  of  (6b) in the case ~ = 1 
and  F = F m  needs some correction. 

Below we denote  h = ?/2 and 

I t  is a known fact that  

E ~U(x) = e-~2/2 du 

T h e o r e m .  
and constants  tha t  are uni form in h: c_  = - 1 . 2 ,  and  c+ = - 0 . 1 2 .  

T o  be more  exact, (a) the upper  bound  for F u = 1 - - F  u is 

where 

1 - x - 2  < ~ - I ( x )  xe x2/2 <~ 1 

(i) Distribution of  u(x), Fu. Fu obeys (6) with 0 = h - 1 

F.(v) <~ c,v~'(v2-h/2), V > Vo (11) 

v>v~ (12) 

0, h > 1/2 

o~= ( 2 - h ) ( 1 / h - 2 ) ,  h < l / 2  

(b) The  lower bound  f o r / 7  is 

Fu(V) i> (2z~)-l/2p~U(k~(1 + e )  v2-h/2),  

where p~ T 1 as e ~ 0, 

k f 4 ( 2 - - h ) h - 2  h blab' 
Y= ~2 x//2(3 - 2 h )  3n h ( 2 _ h ) h - 2 ,  

and 

h<~ l/2 
(13) 

h~1/2  

a 2 = F(3/2 - h)/(F( 1/2 + h ) / ' ( 2  - 2h)) (14) 

(ii) Conditional shock distribution, Fro(.). One has the est imates (6) 
for Fm with 0 = h - 1 for all ~ = 2h e (0, 2). 

To  be more  exact, 

Fm(X) < 3,<(X/4) 

fire(x) > p~ 7t(kr(1 + e) x 2-h/2),  

where p ,  T 1 as e ~ 0 at  k ,  = 6/ah. 

X>Xe 

(15) 

(16) 
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3.1. Distribution Fu: proof of (11, 12) 

This proof will proceed as a sequence of several lemmas. 

Lemma 1. If cv = v 2-h/2, then 

Proof. 

Molchan 

F.(v) ~< P(max wy(z)/> cv) (17) 
[o, L] 

ff,(v)>~P( min wy(r+e)>( l+e)2c~) ,  g e > 0  (18) 
r~[O, t] 

Following Avellaneda and E, (2> one proceeds as follows. Let 
u(0) <0,  then a ( 0 ) = - u ( 0 )  > 0  (see (3, 4)). The event {a(0)>  v} entails 
the event 

Using the relations 

A = { 3a > v: w,(a) + a2/2 < 0} 

w~.(x) ~ w~(1/x) Ixl ~ g v-~/2w~(v/x) Ixl ~ 

one can conclude that A is equivalent (in probability) to the event 

3 = { 3x e (0, 1): vkw,(x) x - '  + v2x-2/2 < 0} 

= {3xe (0, 1): W,(X)+v2-hx ' -2 /2<O} 

c { ? x e ( 0 ,  1): w & ) + c ~ < O }  

In virtue of (9) one has P(u(O) < O) = P(u(O) > 0) = 1/2. Therefore 

e(lu(0)l > v) = p(a(O) > v) < P(A) = P(A) 

< P{ inf wy(x) < - c~,} 
[o, 1] 

i.e., (17) is true. 
We are going to prove (18). The event {a(0) > v} can occur under the 

condition 

B = {u e (0, v)' wy(a) + a2/2 > wy(kv) + �89 2} 

where k > 1 is any fixed number. The use of (7) yields 

B g  {Vxe(0 ,  1): w & ) - w # c ) > ~ ( k 2 - x  2) v ~ hi2} 

= {u  1): w~(x) w,(k)>~k2cv} (19) 



Burgers Equation: Tail Probabilities 

Put e = k - 1. Since w~(x) - wy(k) =d w~(k - x), one gets 

P(lu(x)l  > v) >>. P(B) >>- P( min wy(e+r)~>(1 +e)2cv) 
r e [ 0 ,  l ]  

1145 

The final expression 
Ew~(1)= 1. | 

and 

lim [ua~r/(U)] --I p{ sup wy(x) > u} = c~ 
u ~ o v  [O, l ]  

where a = (1/h - 2 ) +  and x+ = �89 [x[). 
The proof for the lower bound of/~, relies on two lemmas. 

Lemma 2. Let 

�9 r( 1 ) - E{ wy(1) I wr(x), x < 0} 

be the best prediction of wy(1) based on observed { wy(x), x < 0}. Then the 
standard error of the prediction a~ = E [ w y ( 1 ) - f l y ( l ) ,  2 is given by (14). 

Proof. The process wy(x) admits of the following canonical represen- 
tation on the entire Rl-axis in terms of white noise: 16) 

wy(t) = c r f '  ~ [( t  - x) (y- 1)/2 _ ( --x)~-1)/2] dw(x) (20) 

i.e., the a-algebras generated by {wy(s), s ~< t} and { w(s), s <~ t} are identi- 
cal. Hence 

l 

w y ( l ) - - # y ( 1 ) = c r f  ~ ( l - - x )  (y ')/2dw(x) 

1 

a2=C2for ( l - - x )  ~-1 d x = c 2 / y  

for a~ follows from (20) and the normalization 

Lemma 3. If ~/> 1, then one has for a continuous function q~: 

P{ wy(t) <% cp(t) Itl y/2, t ~ (a, b)} >/P{Wl(t) <% q~(t) Itl ,/2, t ~ (a, b)} 

i.e., (18) is true. | 

Upper B o u n d  o f  F-,. The estimate (11) follows from (17) and from 
the following asymptotical result of Piterbarg and Prisyznnyur~" ,.~9): 
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Proof. Let us show that the correlation function of ( i t )  = w i t )  It[ -y/2 
increases as the parameter y e (1, 2) does. Then Lemma 3 will follow from 
the well-known inequality of Slepian. (x2) This states that, if two gaussian 
vectors {4~} and {q;} are such that E~g=Eq~, E4~=Erl 2 and E~i<~E~hrlj 
then P{ 4g < zi, i= 1 ..... n} <<. P(rh < Z~, i =  1,..., n} for any vector { zi}. 

One has 

py( t, s) = E ~ j t )  4y(s)= �89 + a - y -  l a - a - ' ]  y) 

where a z = (t/s) > 1. Therefore 

20ypjt ,  s) = a ~ In a[ f (a -2 )  + (1 + a 2)r In(1 - a - Z ) -  l/1 n a] 

where f ( x ) = l - x ~ - ( 1 - x )  y, x = a  2~(0,1). At the stationary point: 
x = 1/2, f =  1 - 21 - y > 0, while at the end-points: f (0)  = f(1 ) = 0. Therefore 
f~>0 and Oyp ja )>0 .  | 

Lower Bound o f F , :  the case -/< 1. We shall use (18). In virtue of 
(8) we have 

min w j e  + ~) o= w j  - e )  - max wJx)  = w j  - e )  - My 
[0, l ]  [o, l]  

Let us decompose wy(-e)  into the sum 4• + ~ ^, where ~ ^ = E { w j - e )  l 
wjx) ,  x > 0 }  is the best prediction of w j - e )  based on the data 
{ w j x ) , x > O } .  In that case 4• is a gaussian variable with parameters 
(0, 8h~rh) (see Lemma 2). The variable ~• is independent of {wjx )x />0}  
and so of M r and 4 ^- Hence, in virtue of (18) one has 

/Vu(v ) > P ( w j  - e )  - My > (1 + e) 2 c~) 

~>P(~• >(1 + t )z  cv + pcv ' 4 ^ - M r >  - c , p )  

=PpP(4• > [(1 + e ) ~ + p ]  c~) 

=pp(2z 0 1/2 ~([(1 + e ) 2 + p ]  e-h~r~-lcv) 

where pp = P(My - 4 ^ < cvp) ~ 1, v ~ ~ ,  Vp > 0. 
Choose e = h/(2 - h), then 

fu(v) >pp(2zO -I/2 ~ ( k j l  +p ' )  cv) 

where k y = ( l + e ) 2 e - h a h ~ = 4 ( 2 - - h ) h - z h  h/a h and p ' = p / ( l + e )  2. One 
can make p' arbitrarily small by a suitable choice of p. Again, one can find 
re(p) such that pp ~- 1 when v > re(p). 
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The quant i ty  k~ is an increasing function of  ~,: it is easy to see 
that  
x /~<ky~<16n /~ /9" -~3 .08  in the interval (0,1), but  it is unbounded  at 
7 = 2, because a 2 = 0. Hence the case ~, > 1 calls for separate treatment.  

L o w e r  B o u n d  o f  F,:  the case  7 >  1. Let us turn back to (19). 
Recalling Lem ma  3, we have 

F,(v)  >~ P( B) = P(wy(x)  - wy(k) >~ (k 2 - x 2) cv, ~/x {~ (0, 1)) 

>>" P(w1(x)  -- w l(k) >~ c~(k 2 - x Z ) ( k -  x) Il - y)/2, Vx e (0, 1)) 

But, 

w,(x)  - wl(k )  d w l ( k - -  1) -- w l ( x - -  1) 

where w l ( k -  1) is independent  of  { w ~ ( x -  1 ), x ~ (0, 1 )}. Therefore  one can 
conclude, as before, 

flu(V) >/ppP({wl(k-- 1) ~> (ll~ol[ + p )  cv} 

where 

pp = P ( w l ( x  -- 1 ) <~ pcv, Vx ~ (0, 1 )) 

= P (m ax  wl(x )  <~ pcv) = (2/n) 1/2 fpcv e x p ( - x 2 / 2 )  dx  ~ 1, v ~ oo 
[0, 1] oO 

It , l l  = m a x  q~(x)  
[0, 1] 

~o(x) = (k  2 - x2)(/~ - x )  ~' - ~v2 

Put  k = (5 - ),)/(4 - ~,); then 11911 = ~ ( ( ~ -  1 )/(4 - ?)) and 

flu(v) >~pp(2n) - ' /2 ~((1 + p') kycv) 

where p'  = p/k~, ky = 4(6-2~)  t3 ~)/2 (4_7)ty 4)/2. The quant i ty  ky is identical 

with (13). It decreases in the interval ~ e (1, 2) from kl = 16 x/~/9 -- 3.08 to 

k 2 = 2 ~ -- 2.83. The largest value of  ky thus occurs at ~ = 1. This gives the 
value o f t  in (6b): c < --�89 --1.185. 

3.2. Distribution Fm: Proof of (15), (16) 

Lower Bound of F-.. Let a_ < 0 < a+ be points such that the curve 

a 2 

F(a) = -~ + w~(a), a e I~ 
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lies above  the chord  L which connects  the points  (a+_,F(a+_)), where 
I~ = ( a_  + e, a + - e) and e is small enough. Let  us denote  this event  by A. 
Then  the geometr ical  in terpre ta t ion of  the solution u(x )  (see Section 2) 
gives 

A c { a . < a  + e < 0 < a + - e < a * }  

where ( a . ,  a*)  is the shock interval that  contains  0. Therefore,  

P ( a *  - a .  > m = a +  - a _  - 2 ~ )  >~ P ( A )  

The event A means  tha t  

or 

F ( a + ) - F ( a  ) 
F ( a ) > F ( a _ ) +  ( a - a _ ) ,  a e I ,  

a+ - a  

w( a + ) - w( a _ ) a 2_ - a 2 a + + a _ 
- ( a - a _ ) > -  F- - -  (a-a_)  wy(a) w y ( a _ )  a + - a _  2 2 

Using the relations 

w~(a) -- wy(a ) ~ w y ( a - - a _  ) L T~o/Zwy(z) 

w h e r e r = ( a - a _ ) / ( a + - a  ) a n d % = a + - a  , w e g e t  

P ( A )  = P(wy(r )  - wy( 1 ) z < ~( 1 - r) c, r ~ (6, 1 - 6))  

l"rZ--Y/2 ~--'~/'~0 e (0 ,  1/2). Let  where c = 2~o , v - 

^ = E{ wy( 1)l wy(x),  x < 1 - 6} 

Then, similarly to the above  argument ,  ~• = wy( 1 ) -  { A is independent  of  
^ and { wy(r), z < 1 - 6}. Therefore,  

P ( A )  > P( - ~• r > r( 1 - r)  c + cV2r, Vv e (6, 1 - 6)) Pa. ,. 

where Pa, c = P ( w y ( r ) - ~ ^  r >  - c l / 2 r ,  z e ( 6 ,  1 - 6 ) )  + 1 as c ~  m. 
N o w  recall the relat ion {• =d 6htTh~, h =~,/2, where ~ is a s tandard  

gaussian variable and trh is the s tandard  error  predict ion of  wy(1) based on 
{wy(x), x < 0 } ,  see (14). Then  

P ( A  ) >1 (2zc) 1/2 ea,  ,. g,(~ -h~r ~- 1( 1 - 6)( 1 + p) c) 
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where p = c - 1 / 2 ( 1 - 6 ) - ~ 0  as c ~ o o .  Recall that m = % ( 1 - 2 6 )  and 
Cm : =  �89 z - h =  C ( 1 -  26) 2 -h  Then we obtain the desired estimate 

P ( a * - a , > m ) > ~ ( 2 n )  l/2 P6 ,~ (ky (1  --6) Cm) 

where ky = 6 -ha  h l( 1 - 6)( 1 - 26) h - 2. 
Putting 6 = 1/3, we get ky = 6/g h. 

Upper Bound  o f  F,,. Let x0 < 0 be the position of a shock point and 
( a , ,  a*) be its shock interval containing 0: a ,  < 0 < a*. Consider the event 
m = a * - a , > ~ s .  The function a(x) is non-decreasing, and so u ( x ) =  
x - a(x) <~ x - a* for all x > Xo. Consequently, 

u ( - p s )  <~ - p s - a *  <~ - ps 

if Xo < - p s ,  where p e (0, 1) is a constant. 
Let Xo > - p s  and m >~s. Then the center of the discontinuity in u(x) 

at x = Xo, i.e. the point (Xo, X o -  (a* + a,) /2) ,  lies between the straight lines 
y = x +_ m/2 in the interval 0 > Xo > - p s .  However, in that case one has 
either 

u ( - p s )  >~ m/2 - p s  > s / 2  - ps 

or u(0)~< - m / 2  <~ - s /2 .  It follows that 

P(m >i s) <~ P(lu( - p s ) l  >1 ps) + P(lu( - p s ) l  >i s(1/2 - p)) + P(lu(0)l >t s/2) 

Putting p = 1/4, one gets 

P(m >~ s) <~ 3P(lu(O)l >1 s/4) (21) 

Since the field of shock points is space homogeneous, m is the length of the 
shock interval that covers a given point. 

We began by assuming Xo < 0. By (9), the events Xo < 0 and Xo > 0 are 
equally probable. Therefore (21) is true in the general case. 
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